DataGenius

LITERATURE REVIEW OF BAYESIAN DEEP LEARNING

Robin CAMARASA

August 14, 2023

1
1 1
+1+...
X ~ N (i, 0%) 3 A
ST
—_— F) \/1+1+\/1+1+\/1+1+\/1+...
+ -
SR =0 =1 1
//// BT
0.5
Xt:Xt,I—.-E
! A
Br Vi = ko OnXi—k 0L |
0 0.5
) - PANE)
Y ~ B(n,p)
VE = —~
T 41 =0

Contents

Deep Learning

1.1 Artificial Neural Networks

1.1.1 Introduction

1.1.2 Basic Neural Network

1.1.3 Propagations .

1.1.4 Other Supervised Learnlng Network

1.2 Standard Practices

1.2.1 Model Training and Selection
1.2.2 Deep Learning in Practice.

1.3 Limits
1.3.1 Technical Issues . .
1.3.2 Reluctance of the Industrial World .
Bayesian Deep Learning

2.1 Bayesian Neural Networks

2.1.1 Introduction
2.1.2 Mathematical Notions

2.2 Uncertainties

2.2.1 Aleatoric Uncertainties .
2.2.2 Epistemic Uncertainties.

2.3 Main Probabilistic Technlques

2.3.1 Error Bars . N

2.3.2 Hyperparameter Tunlng

2.3.3 Probabilistic Backpropagation .
2.3.4 Monte-Carlo Dropout

2.4 Conclusion

© © 0w o W NN N oo o O ot otk R WNN NN

=
o

Deep Learning

1.1 Artificial Neural Networks

1.1.1 Introduction

Context : Deep Learning is a part of Machine Learning which is a field of Artificial Intelligence.
Machine Learning consists in a study of algorithms that achieve a task without any explicit in-
struction. As part of Machine Learning, a Deep Learning model performs this task using Artificial
Neural Networks.

Evolution : Artificial Neural Networks were intuited in 1943 by Warren McCulloch and Walter
Pitts and popularised by Yann Lecun[10] thanks to their applications in computer vision. Nowa-
days, from start-up to GAFA, many companies invest resources in this innovative field.

Supervised/Unsupervised : To train a Machine Learning model data are required. A super-
vised learning model have the raw data and and the expected answer of the model on those raw
data whereas an unsupervised learning algorithm only have raw data.

1.1.2 Basic Neural Network

Vanilla Neural Network : A neural network is ensemble of neurons organised in layers and
linked with weights. The number of layers and units per layers are hyperparameters of the model.
Please find an example of a simple neural network in figure 1.1 page 2.

XS AN T
\\' '17 Q\' 'lr

0 /
2}1 }\ﬁ 4)1 }\ﬁ
KON W HOXK

Figure 1.1: Vanilla Neural Network

1.1. ARTIFICIAL NEURAL NETWORKS DataGenius

Layer : As one can see in figure 1.1 page 2, the network is organised in layers. The input layer
(pink neurons) holds the normalised value of the raw data. The output layer (blue neurons) holds
the value of the prediction made by the network.

Neuron : A neuron is composed of an aggregation function (usely scalar product) and an acti-
vation function (ReLu, Tanh, sigmoid ...). The aggregation function of a neural of the i** layer is
linked with weights to the output of the neurons of the i — 1** layer. Neurons of the first layer does
not have aggregation function. The activation function rescale the output and gives non-linearity
property to the model. Please find an example of a simple neuron in figure 1.2 page 3.

Activation

g(z) = maz(0, x)

Figure 1.2: Simple neuron

1.1.3 Propagations

Forward propagation : To obtain the output layer with the input, a composition of aggregation
and activation functions have to be computed. Please find this composition of functions at the
equation 1.1 page 3. The forward propagation is the decomposition of the equation 1.1 page 3 with
the equation 1.2 page 3.

2" =gpohyo0..0g;0h(zY) (1.1)

where " is the output of the network, z° the input of the network, g; i*" layer activation function
and h; it" layer aggregation function.

@l = gjohy(z’™") (1.2)

where 27 is the values hold by the j** layer, gj jt layer activation function and h; §th layer
aggregation function.

Backpropagation : Backpropagation consists in a gradient descent adapted to Neural Networks,
to obtain the weights that give the best predictions. The gradient descent is computed on the loss
function, a function to minimise that takes the prediction and the ground truth as input (example:
mean squared error). Weight values are updated with the equation 1.3 page 3. Backpropagation
principle is illustrated in the figure 1.3 page 4. In practice, data scientists train their networks
with algorithms based on backpropagation such as Adadelta[16].

IL(y,1)
=W AT (1.3)
1.3

w

where) is the learning rate, w; the weight linking the i*" neuron of the (k — 1) layer with j*"
neuron of the k** layer, L the loss function, ¢ the prediction of the network and y the ground truth.

1.2. STANDARD PRACTICES DataGenius

oL B oL 0z ’ B

Ory 0z Oxy

oL oL 0z . oL
A T Al df -
ox, 0z 0x1 0z
oL B OL 0z

(‘);l,‘() B 0z ‘(‘)(I‘U ‘

Figure 1.3: Backpropagation principle

1.1.4 Other Supervised Learning Network

CINN : CNN stands for Convolutional Neural Network. This kind of network is obtained using
convolution product as aggregation function. This kind of networks is very efficient in image
analysis tasks.

RNN : RNN stands for Recurrent Neural Network. When data display a recurrence in their
structure (example: Time Series), using Recurrent Neural Networks is a wise choice. The two
main RNN architectures are Gated Recurrent Units[5] (GRU) and Long Short Term Memory|[7]
(LSTM).

1.2 Standard Practices

1.2.1 Model Training and Selection

Splitting data : To train a model, one splits the dataset in 3 subset, the training set, the
validation set and the test set. The training set is data used to compute forward and backward
propagation, therefor those data are the only one used to update weights, they represent around
70% of the dataset. The validation set is data used to monitor training and prevent overfitting,
they represent around 15% of the dataset. The test set allows to tune hyperparameters and select
the best model, they represent around 15% of the dataset.

During training : In practice, training data are sent by batch into the network and weights
are updated. When all the train set has been sent in the network an epoch is finished. At epoch
end, metrics such as mean squared error or accuracy are computed on the training set and on
the validation set. Please find in figure 1.4 page 5, in blue the theoretical curve of the mean
squared error on the training set and in pink the theoretical curve of the mean squared error on
the validation set with a model that overfits after 350 epochs.

Model selection : Once you have trained different models, you can test their performances
comparing metrics on the test set. The best models can be combined by averaging their output in
case of regression or choosing the majority class in case of classification.

1.2.2 Deep Learning in Practice

Hardware : The most important component of a computer to train a neural network is the
GPU. Two options are possible :

1.3. LIMITS DataGenius

Figure 1.4: Example of metric curves

e Train a network on your own computer. This option requires a powerful GPU (at least an
NVIDIA GTX 1060 6Go of RAM)

e Train your network on a GPU cluster. That option is not free and an internet connection is
required.

Languages : The main programming language used for Deep Learning is Python because of the
multiplicity of frameworks that exist. It is also possible to train basic neural network in R and Java
but those options are marginal. Finally, C++ allows you to create Neural Networks for onboard
devices.

Framework : The most common framework and the one used for that project is keras[4] with
Tensorflow[1] as backend. Tensorflow[1] can also be used without keras.

1.3 Limits

1.3.1 Technical Issues

Complexity : Compared to other Machine Learning models, Artificial Neural Networks are
hard and long to train. Furthermore, to train a neural network one needs to tune much more
hyperparameters than with other Machine Learning models such as Random Forest.

Lack of theory : Even though Neural Networks were coined in 1943 by Warren McCulloch,
their implementation are quite recent. Therefor Deep Learning is mostly an empirical field of
Artificial Intelligence. This empiricism is highlighted when one has to tune the hyperparameters
of its network.

1.3.2 Reluctance of the Industrial World

Black Box : Deep Learning gives outstanding results in many tasks like Image Analysis, Natural
Language Processing, Time Series Predictions ... Those results are hardly explicable because unlike
Linear Regression or Decision Trees, the prediction process is too complex to be computed by a
human being. Therefor Neural Networks are like black boxes.

Uncertainties : Unlike a Linear Regression, a standard Neural Network do not give uncertainties
values with its prediction. And this point is going to be discussed in the second chapter of this
literature review.

Bayesian Deep Learning

2.1 Bayesian Neural Networks

2.1.1 Introduction

Bayes formula : The Bayesian adjective derives its name from Thomas Bayes that discovers the
Bayes Theorem, which is the equation 2.1 page 6. Whereas that discovery is due to Bayes, Pierre-
Simon Laplace is the one that understood in 1774 the implications of the formula in statistics and
probabilities.

P(B|A).P(A)

PAIB) = ==5

(2.1)
where A and B are two random variables.

Application to Deep Learning : The main difference between Bayesian Deep Learning and
standard Deep Learning is that weights are not scalar but gaussian distributions. During training,
prosterior distribution of weights is computed with the prior distribution of weights with the
Bayes Theorem[3]. The advantage of Bayesian Deep Learning over standard Deep Learning is the
uncertainty computation that is required in some projects like the Google Car.

2.1.2 Mathematical Notions

Notations : The dataset D = {(2,%n)})_; is composed of the input data z,, and the target
data y,. {tn}ﬁ[:1 are the output data. The Neural Network has L layers with V; units per layers.
W = {W,}E, is a collection of weights matrix.

Bayesian training : Considering the prior distribution of weights, one can obtain the posterior
distribution of weights with the Bayes rule[3], as shown at the equation 2.2 page 6. In most cases,
P(W|z,y,D’) and P(y|z, D’) are intractable

where P(y|z, D’) is a normalisation constant, D’ the already observed data of the dataset, P(y|x, W, D’)
the likelihood function, P(y|a, W, D) the prior distribution of weights and P(W|z,y, D) the pos-
terior distribution of weights.

(2.2)

2.2. UNCERTAINTIES DataGenius

Bayesian prediction : Prediction can be done integrating over the space of weights[3] like at
the equation 2.3 page 7. This is called marginalisation and consist in computing a weighted average
on the weight space.

p(tlz, D) = / p(tlz, W)p(W|D)dW (2.3)

where p(t|z, D) is the predictive distribution, p(W|D) the distribution of the weights and p(t|x, W)
the output distribution considering a specific distribution of weights.

2.2 Uncertainties

2.2.1 Aleatoric Uncertainties

Definition : As explained by Kendal in an article[9] in 2017, aleatoric uncertainties are inherent
to the data. Therefor a noisy dataset will produce huge aleatoric uncertainties. In the classification
example of the figure 2.1 page 7, these uncertainties mainly lie in the junction between classes.
These uncertainties can be classified as heteroscedastic and homoscedastic uncertainties. They are
respectively the variable and the constant parts of aleatoric uncertainties, this difference intervenes
with data that are not equally noisy.

Reduction method : In regression cases, a modification of the loss allows you to reduce the
heteroscedastic giving more importance to the unnoisy input data. Please find this modification
of the loss function at the equation 2.4 page 7.

L(ys, t;)
20’(1’1‘)2

where L(y;, t;) is the standard loss and o the noise of the data.

1
Lalea(-riyyivti) - + élog(g(‘rz))2 (24)

2.2.2 Epistemic Uncertainties

Epistemistic uncertainties correspond to the uncertainties inherent to the model. Those uncer-
tainties decreases while training. For instance in the figure 2.1 page 7 most of the epistemic
uncertainties are localised in the class of the sidewalks. Those uncertainties detection will be
discussed in the next section.

(a) Input Image (b) Ground Truth (c) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Figure 2.1: Illustration of the differences between the uncertainties extrated from an article of Dr
Kendall[9]

2.3. MAIN PROBABILISTIC TECHNIQUES DataGenius

2.3 Main Probabilistic Techniques

2.3.1 Error Bars

Intuition : A classic misconception is to consider the softmax output as the model confidence as
explained by Yarin Gal [6]. Chritopher Bishop proposed a solution to tackle this issue in an article
where he exposes the main Bayesian Methods adapted to Deep Learning[3]. The idea is to make
modifications on the backpropagation algorithm to make it returns the result with uncertainties.

Concept : The idea behind adding error bars is to make a second order Taylor expansion of the
loss function around the best weights as described at the equation 2.5 page 8. By a modification of
the backward propagation exposed by Bishop [2], it is possible to compute the exact value of the
Hessian matrix. With the Gaussian approximation justified by Walker[15] and the equation 2.5
page 8, one can deduce an approximation of the equation 2.3 page 7. Please find this approximation
at the equation 2.6 page 8. Once you have the value of o2 you can compute error bars.

L(w) = L(weest) + %(w — Whest)" HL(Whest) (W — Whest) (2.5)

where L is the loss function, wyes; the best weights obtained after training and Hp (wpest) the
Hessian matrix of the loss function computed for wpes¢-

(t - ybest)2 1
1 - 2 .
p(t|z, D) = ———=e 20} with O'tz =+ vagzwbestHL(wbest)vawzwbest (2.6)

\2ma? B

where § depends in the aleatoric uncertainties, V ,yw=wpest is the gradient of the output computed
for Wyest

Pros and cons : This technique offers a first approach on how one can compute error bars and
also offers an approximation of the intractable equation 2.3 page 7. The main issue their is the
computation complexity due to Hessian calculus.

2.3.2 Hyperparameter Tuning

Intuition : Bayesian Deep Learning introduce new hyperparameters in the Neural Network, 8
defined at the equation 2.6 page 8 and an hyperparmeter o that will be defined in the next para-
graph. One of the great strength of Bayesian Deep Learning is to compute those hyperparameters
while training. This computation technique is exposed in an article written by Hernandez|8].

Concept : Let’s define 8 properly, A Bayesian Neural Network is a function approximation tech-
nique that follows the equation 2.7 page 8. Now, we introduce a precision parameter a for weights,
in order that the prior distribution of weights follows : w; ;5 ~ N (0, a~1). Those hyperparmeters
tuning is performed converting the equation 2.2 page 6 into the equation 2.8 page 8.

Yn = f(xn, W) + €, with e, ~ N(O,57") (2.7)

where f is the Neural Network approximation function

_ Plylz, W, 8)P(Wla, D) P(a) P(F)
P(ylz, ')

P(Wlz,y, o, 3,D') (2.8)

2.3. MAIN PROBABILISTIC TECHNIQUES DataGenius

Pros and cons : This technique increases the computation complexity but gives a better un-
derstanding and description of the aleatoric and epistemistic uncertainties. It also adds more
approximation to the weights and output distributions.

2.3.3 Probabilistic Backpropagation

Intuition : The probabilistic backpropagation is based on an article of Hernandez[8]. The main
idea proposed in that article is that weights are gaussians and that can be update using a variant
of the backpropagation algortihm.

Formal definition : Let’s define Z the normalisation component of the equation 2.2 page 6.
Using an approximation developped by Dr Minka in 2001[12], weights can be updated as shown at
the equations 2.9 and 9.

e _ 4y 00(2)

am

e — g g2 (<aloa£:q(12))2 - <8[0§1§Z)>) (2.9)

Pros and cons : This method proposed by Dr Hernandez is in practice quicker than the one
exposed by Bishop and it also does not need the computation of any Hessian matrix which is a
huge complexity gain. On the other hand, Yarin Gal highlights in its article[6] that weights storage
is twice bigger which is an issue for onboard systems.

where w ~ N (m, v)

2.3.4 Monte-Carlo Dropout

Intuition : In 2016 Yarin Gal proposed a ground breaking technique to compute a Bayesian
approximation using standard Deep Learning Networks [6]. This method is based on Dropout
layers, which consist in randomly set neurons value to zero with a probability that depends on the
layer. The figure 2.2 page 9 illustrates that principle.

SRR K AL,
SN <8 <N\ 5

Figure 2.2: Dropout example with a dropping rate of 30%

Concept : Yarin Gal defines the distribution of its weights with the equation 2.10 page 10. The
loss defined in the article corresponds to a cross entropy loss with weight decay. Dr Gal shows
the equivalence between a Gaussian process and a Network based on Dropout Layers and cross
entropy loss described in this paragraph. Therefor to compute an estimation of the equation 2.3
page 7, one can use the Monte-Carlo approximation on the network we have defined. You will find
an approximation of the mean and the variance of the output respectively at the equation 2.11
page 10 and the equation 2.12 page 10.

2.4. CONCLUSION DataGenius

W, = Ml.diag((zl,i)l‘-il) with z; ~ B(0,p;) (2.10)

where M; is a matrix containing the weights value of I** layer before dropout.

T
E(p(tlz, D)) = %Zti(ani) (2.11)
i=1
Var(p(t|z, D)) = %.Id + % Zti(m, W) Tt (x, W;) + E(p(t|z, D)) E(p(t|z, D)) (2.12)

where t*(z, W;) is the result of the ith forward propagation in the network with z as input

Pros and cons : The method described can be computed quickly, and is easy to implement be-
cause you don’t need a probabilistic framework like PyMC[13] or Edward[14]. The main drawback
is how recent this article is. So far, few research teams and companies have implemented it yet.

2.4 Conclusion

Overview : This literature review proposed an overview of Bayesian Deep Learning structured
around an explanation of Deep Learning, an exposition of the main probabilistic models applied
to Neural Networks and their applications for uncertainties computation.

To go further : This literature review will be followed by an implementation of the main
Bayesian techniques. Those implementations will be tested on the MNIST dataset[11], that will
lead to the redaction of a scientific article and a poster.

10

Bibliography

[1]

[10]

[11]

[12]

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Sys-
tems Design and Implementation ({OSDI} 16), pages 265-283, 2016.

Chris Bishop. Exact calculation of the hessian matrix for the multilayer perceptron, 1992.

Christopher M Bishop. Bayesian methods for neural networks. Neural Computing Research
Group Report NCRG/95/009, Department of Computer Science and Applied Mathematics,
Aston University, Birmingham B4 TET, UK, 1995.

Francois Chollet et al. Keras, 2015.

Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical evalua-
tion of gated recurrent neural networks on sequence modeling. arXiv preprint arXiv:1412.3555,
2014.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing
model uncertainty in deep learning. In international conference on machine learning, pages
1050-1059, 2016.

Felix A Gers, Jiirgen Schmidhuber, and Fred Cummins. Learning to forget: Continual pre-
diction with lstm. 1999.

José Miguel Hernandez-Lobato and Ryan Adams. Probabilistic backpropagation for scalable
learning of bayesian neural networks. In International Conference on Machine Learning, pages
1861-1869, 2015.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for
computer vision? In Advances in neural information processing systems, pages 5574-5584,
2017.

Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recogni-
tion. Neural computation, 1(4):541-551, 1989.

Yann LeCun, Corinna Cortes, and Christopher JC Burges. The mnist database of handwritten
digits, 1998. URL http://yann. lecun. com/exdb/mnist, 10:34, 1998.

Thomas Peter Minka. A family of algorithms for approximate Bayesian inference. PhD thesis,
Massachusetts Institute of Technology, 2001.

11

BIBLIOGRAPHY DataGenius

[13] Anand Patil, David Huard, and Christopher J Fonnesbeck. Pymec: Bayesian stochastic mod-
elling in python. Journal of statistical software, 35(4):1, 2010.

[14] Dustin Tran, Alp Kucukelbir, Adji B Dieng, Maja Rudolph, Dawen Liang, and David M
Blei. Edward: A library for probabilistic modeling, inference, and criticism. arXiv preprint
arXiv:1610.09787, 2016.

[15] AM Walker. On the asymptotic behaviour of posterior distributions. Journal of the Royal
Statistical Society: Series B (Methodological), 31(1):80-88, 1969.

[16] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint
arXiw:1212.5701, 2012.

12

Uncertainty Quantification Applied to Monte-Carlo Dropout
Neural Networks, a Bayesian Approximation

Robin Camarasal>? and Samy Melaine?

Mines de Saint-Etienne, Saint-Etienne, France
2Data Genius, Villeurbanne, France

August 14, 2023

Abstract

Deep Learning has become a game changer tech-
nology in all the field of industry. Indeed, from
predictive maintenance to image analysis, A.l. sys-
tems outperform humans in a lot of tasks. However
Neural Networks are seen by most of the industrial
companies as an over-confident black-box. There-
fore, the main purpose of this article is to tackle this
over-confidence using a ground-breaking technique
to compute epistemic uncertainties.

1 Keywords

Data Sciences, Artificial Intelligence, Machine
Learning, Bayesian, Deep Learning, Epistemic Un-
certainties

2 Introduction

Neural Networks and Deep Learning are sta-
tistical learning techniques born in the 40s with
the work of Warren McCulloch and Walter Pitts
[McCulloch and Pitts, 1943]. However, at that
time, this revolutionary idea did not have indus-
trial applications because of the power of compu-
tation in the 40s. With the work of Yann Lecun
[LeCun et al., 1998] and the evolution of the hard-
ware devices, especially the GPU, over the last two
decades, McCulloch and Pitt’s theory has become
a reality.

Those outstanding techniques outperform
other statistical learning models like Random For-
est, Logistic Regression ... but a major disadvan-
tage slows down their expansion. Deep Learning
acts as a black box which induces reticence from
the industrial word toward those methods. Two
main strategies are proposed to counter the lack of
confidence one have in Neural Networks. Some re-
searchers work on the interpretability of Networks
[Lipton, 2016] while others propose to add uncer-
tainties to Networks [Gal and Ghahramani, 2016].
The second approach will be developed in this ar-
ticle.

The main goal of this paper is to identify if
an input of the test set is part of a sparse space of
the input training set using epistemic uncertainties.
Our approach was to qualify different types of un-
certainties, train a Vanilla Neural Network over the
MNIST dataset[LeCun et al., 1998] and then apply
Dr Gal’s framework|[Gal and Ghahramani, 2016].

3 Materials and Methods

3.1 Epistemic and Aleatoric Uncer-
tainties

The two main sources of uncertainties are aleatoric
uncertainties and epistemic uncertainties :

e As explained by Kendal in an
article[Kendall and Gal, 2017] in 2017,
aleatoric uncertainties are inherent to the

data. Therefore a noisy dataset will produce
huge aleatoric uncertainties. Those uncer-
tainties can be classified as heteroscedastic
or homoscedastic. They are respectively the
variable and the constant parts of aleatoric
uncertainties, this difference intervenes with
data that are not equally noisy.

e Epistemic uncertainties correspond to the un-
certainties inherent to the model. Those un-
certainties decreases while training.

Our research will be focused on epistemic un-
certainties.

3.2 Dataset and tools

—

o

Figure 1: Sample of the MNIST dataset

The experiments were launched on the famous,
28x 28 greyscaled images of numbers dataset, the
MNIST[LeCun et al., 1998]. You will find an ele-
ment of this dataset at figure 1 page 2. It contains
60 000 annotated images.

Training was performed on an Ubuntu 18.04
distribution of Python 3.6 with the packages
Keras 2.2.0 [Chollet et al., 2015], Tensorflow-gpu
1.9.0[Abadi et al., 2016]. About the hardware, the
computer was equipped with an NVIDIA GeForce
GTX 1060 6Go of RAM and an Intel Core i7-7700.

3.3 Vanilla Network

In order to have the more usual Neu-
ral Network, mean squared error loss and
stochastic gradient descent optimiser (default
Keras[Chollet et al., 2015] learning rate) were
used. The structure is a combination of fully-
connected layers (figure 2 page 2). The number
of neurons per layer and number of layers are the
hyperparmeters of the network.

J11T

Figure 2: Vanilla network structure

The training contained 250 epochs with a
batch size of 50 images. Overfitting has been pre-
vented splitting data in 3 samples, training (70%),
validation (15%) and test set (15%).

Once the hyperparameters correctly fine-tuned
the same structure was applied on a 5-classes-
output network.

3.4 Bayesian Deep Learning

The dataset D = {(2n, yn)}2_; is composed of
the input data x,, and the target data y,. {t,}3_,
are the output data. The Neural Network has L
layers with V; units per layers. W = {W;}L | is a
collection of weights matrix.

Considering the prior distribution of weights,
one can obtain the posterior distribution of weights
with the Bayes rule[Bishop, 1995], as shown at the
equation 1 page 2. In most cases, P(Wlz,y, D)
and P(y|z, D’) are intractable.

P(W|x,y,D') = P(:U\?(Z/IQ)CPZ()II/[)/‘D)

(1)

where P(y|xz,D’) is a normalisation constant, D’
the already observed data of the dataset, P(y|z, W)
the likelihood function, P(W|D’) the prior distri-
bution of weights and P(W|z,y, D’) the posterior
distribution of weights.

Prediction can be done integrating over the
space of weights[Bishop, 1995] like at the equation
2 page 2. This is called marginalisation and consist
in computing a weighted average over the space of
weights.

pltlz, D) = / pltle, Wp(WID)IW — (2)

where p(t|z,D) is the predictive distribution,
p(W|D) the distribution of the weights and
p(t|x, W) the output distribution considering a spe-
cific distribution of weights.

3.5 MC Dropout - a Bayesian Ap-
proximation

Figure 3: Monte-Carlo Dropout Neural Network

In 2016 Yarin Gal proposed a ground break-
ing technique to compute a Bayesian approxi-
mation using standard Deep Learning Networks
[Gal and Ghahramani, 2016]. ~ This method is
based on Dropout Layers, which consist in ran-
domly set neurons value to zero with a probabil-
ity that depends on the layer. The figure 3 page 3
illustrates that principle.

Yarin Gal defines the distribution of its weights
with the equation 3 page 3. The loss defined in
Gal’s article corresponds to a cross entropy loss
with weight decay. Dr Gal shows the equivalence
between a Gaussian process and a network based
on Dropout Layers and cross entropy loss described
in this paragraph. Therefore, to compute an es-
timation of the equation 2 page 2, one can use
the Monte-Carlo approximation on the network we
have defined. You will find an approximation of the
mean and the variance of the output respectively at
the equation 4 page 3 and the equation 5 page 3.

®3)

where M is a matrix that contains the weights val-
ues of I*" layer before dropout.

Wy = My.diag((z1,4);%,) with z; ~ B(0,pi)

Bt D) = 3 St W) @)

el

1
B
+E(p(tlz, D)) E(p(t|z, D))

T
1 § i W, T i W,
Var(p(t|x,D)) = 'Id + T i=1t (.’.E, 1) t ($7 Z)

®)

where t(x, W;) is the result of the i*" forward prop-
agation in the network with x as input

By some manipulation of the equation 6
page 3 exposed in the article of Dr Kwon
[Kwon et al., 2018], one can obtain the equation 6
page 3. From this equation, one can extract the
epistemic contribution to the covariance matrix.

T
Var(p(tl, D)) = 7 3 diag(t'(, W) — ' (a, W)*?

epistemic
1 X
— i) _ F)®2
o D W) — D (6)
t=1
aleatoric
where u®2 = wu”, t is the empiric mean and

diag(u) is a diagonal matrix with the element of
the vector w.

Like the Vanilla Neural Network, the MC
Dropout Neural Network, illustrated at figure 3
page 3, have the number of layers and the number
of neurons per layer as hyperparameter. But new
hyperparameters had to be added to the model, the
dropping rate of each layer.

The epistemic metric that will be discussed in
the results’ section is the average of the diagonal el-
ements of the epistemic matrix in equation 6 page
3. The value of this metric is high when the in-
put data does not fit what the model learnt during
training and low when it fits.

4 Results

4.1 Vanilla Neural Network

To obtain a fine-tuned network we used a one-
at-the-time optimisation algorithm as illustrated at

Table 1: Accuracy mean values computed over the
test set

10 classes
0.94

5 classes
0.97

| Accuracy

figure 4 page 4, the optimised criterion was the ac-
curacy of the model over the test set. The best
network obtained with this algorithm is a 4 inner
layers with 25 units per layer Neural Network.

Once the 10-classes-output network and the
5-classes-output network were fine-tuned, we com-
puted the accuracy on the test set. You will find
the result of those computations at table 1 page 4.
One can notice that the accuracy is better for the 5-
classes-output network, this is due to the fact that
it is easier to learn to a model to recognise number
from 0 to 5 rather than to recognise numbers from
0to9.

Figure 4: One-at-the-time optimisation algorithm
visualised on a minimisation problem of a function
f:RZ=R

4.2 MC Dropout - a Bayesian Ap-
proximation

Table 2: Epistemic mean values computed over the
test set

5-9 classes
2.22 x 1072

0-4 classes
3.61 x 1073

| Epistemic

Another one-at-the-time algorithm was used to
obtain an approximation of the optimal dropping

rates. The maximised criterion with this algorithm
is the difference between the mean of the epistemic
metric computed over the unlearnt classes elements
of the test set and the mean of the epistemic metric
computed over the learnt classes elements of the
test set. The dropping rates that maximise this
criterion were 0.1.

Once the network fine-tuned, we computed the
epistemic metric mean over the elements of the un-
learnt classes of the test set and over the elements
of learnt classes of the test set. Those results are
referenced in the table 2 page 4.

5 Discussion

The results of the table 2 page 4 show that
it is possible to differentiate an element of a class
that was learnt during training from an element of
a class that was not. From that perspective, that
result demonstrate the efficiency of the technique
developed in that paper.

However, the one-at-the-time optimisation al-
gorithm used to fine-tuned the dropping rates hy-
perparameters introduce a bias in the analyse be-
cause the test set is used to fine-tune the hyperpa-
rameters and test the efficiency of the network. A
better method would have been to split the test set
but that required to use more data for testing and
less for training.

The technique developed here could have a
huge impact in systems that need to counter one
pixel attack or where human life are at risk like au-
tonomous cars. Furthermore, this technique can be
applied to networks that have already been trained.

6 Conclusion

This article gave a framework to compute epis-
temic uncertainties and applied this framework
to the MNIST dataset[LeCun et al., 1998]. That
technique is part of an overall reflection about how
to make neural networks safer from a human point
of view.

Many interesting projects could follow
this work. On the one hand, this technique
could be compared this to classic Bayesian
approaches[Herndndez-Lobato and Adams, 2015],
on the other hand, aleatoric uncertainties has not
be treated in this article because the data were
equally noisy, one could also work on this aspect
adding some blur in the input data and quantify
the impact on aleatoric uncertainties.

References

[Abadi et al., 2016] Abadi, M., Barham, P., Chen,
J., Chen, Z., Davis, A., Dean, J., Devin, M.,
Ghemawat, S., Irving, G., Isard, M., et al
(2016). Tensorflow: A system for large-scale ma-
chine learning. In 12th {USENIX} Symposium
on Operating Systems Design and Implementa-
tion ({OSDI} 16), pages 265—283.

[Bishop, 1995] Bishop, C. M. (1995). Bayesian
methods for neural networks. Neural Computing
Research Group Report NCRG/95/009, Depart-
ment of Computer Science and Applied Mathe-
matics, Aston University, Birmingham Bj 7ET,
UK.

[Chollet et al., 2015] Chollet, F.
Keras.

et al. (2015).

[Gal and Ghahramani, 2016] Gal, Y. and Ghahra-
mani, Z. (2016). Dropout as a bayesian approxi-
mation: Representing model uncertainty in deep
learning. In international conference on machine
learning, pages 1050-1059.

[Herndndez-Lobato and Adams, 2015] Herndndez-
Lobato, J. M. and Adams, R. (2015). Prob-
abilistic backpropagation for scalable learning
of bayesian neural networks. In Interna-

tional Conference on Machine Learning, pages
1861-1869.

[Kendall and Gal, 2017] Kendall, A. and Gal, Y.
(2017). What uncertainties do we need in
bayesian deep learning for computer vision? In
Advances in neural information processing sys-
tems, pages 5574-5584.

[Kwon et al., 2018] Kwon, Y., Won, J.-H., Kim,
B. J., and Paik, M. C. (2018). Uncertainty quan-

tification using bayesian neural networks in clas-
sification: Application to ischemic stroke lesion
segmentation.

[LeCun et al., 1998] LeCun, Y., Cortes, C., and
Burges, C. J. (1998). The mnist database of
handwritten digits, 1998. URL http://yann. le-
cun. com/exdb/mnist, 10:34.

[Lipton, 2016] Lipton, Z. C. (2016). The mythos
of model interpretability. arXiw preprint
arXiv:1606.03490.

[McCulloch and Pitts, 1943] McCulloch, W. S.
and Pitts, W. (1943). A logical calculus of the
ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115-133.

